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Abstract :  Fault diagnosis of rotating machines is one of the most considered maintenance methods for 

detecting faults early to save maintenance cost and time. In this work, an improvement technique is 

presented using back propagation neural network (BPNN) based vibration data to detect different faults in 

rotating machines such as unbalance, pulley misalignment, belt damage, and combined faults. The root 

means square (RMS) of vibration signals at different points was collected and employed as an input vector 

to the network. It was observed that the test and validation performance achieve the same pattern and the 

best validation was recorded at 0.33038 mean squared error (MSE). This training accuracy can identify 

combined pulley misalignment with unbalance, static unbalance on two shafts, dynamic unbalance, and 

combined belt damage with unbalance faults with identification accuracy of 95, 92, 88, and 80%, 

respectively. Static unbalance, pulley misalignment, and belt damage faults come in the second level of 

accuracy since they have the same accuracy of 75%. Furthermore, this network has a superior improvement 

in detecting combined faults in addition to other single variable faults. 
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1. Introduction 
 

Rotary machines in general configuration consist of 

three main parts; rolling or journal bearings (anti-

friction or fluid bearings), rotor, and foundation. 

Since rotary machines commonly work in a harsh 

operating environment, this makes them more 

exposed to different types of faults and increases 

the difficulty of fault diagnosis. The failure in 

rotating machines leads to decrease productivity, 

economic, safety, and other environmental issues 0-

[4]. It was concluded that early faults detection is 

necessary to keep the cost in the industry by 

keeping machine lifetime and spareparts. Therefore, 

the advanced maintenance systems move to another 

form of maintenance handling called predictive 

maintenance. So, it is based on condition 

monitoring to improve the productivity rate, 

production quality, and efficiency of manufacturing 

plants. The main concept of predictive maintenance 

is to achieve early detection of potential failures. 

When induction motors drive machines, predictive 

maintenance is used to find the root causes of these 

early failures (i.e., rotational unbalance, shaft 

misalignment, and bearing problems) and detect 

minor defections before they occur. It is adequately 
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used to detect stator winding faults, broken rotors, 

and rotor air gap eccentricity. The benefit of early 

detection of a failing component is to avoid product 

failure due to overheating caused by faults and the 

energy use saved by switching it off. 

More efforts were presented to detect and monitor 

the different faults initiated in rotary machines 

based on different condition monitoring methods. 

Independence-oriented variational mode 

decomposition method was proposed via 

correlation analysis to adaptively get the weak and 

compound fault feature of wheel set bearing[5]. 

Stochastic resonance was first investigated in a 

multi-stable system by computing its output 

spectral amplification, numerically analyzing its 

output frequency response, examining the effect of 

rescaling and damping factors on output responses, 

and finally presenting a method for initiating 

bearing fault diagnosis based on damped stochastic 

resonance with stable-state matching [6]. A multi-

speed fault diagnostic approach was presented 

based on self-adaptive wavelet transform 

components produced from bearing vibration 

signals[7]. The presented approach can distinguish 

between signatures of four conditions of roller 

bearing, i.e., healthy bearing and three different 

types of defected bearings on the inner race, outer 

race, and roller separately. A bearing fault 

diagnosis technique was developed to increase the 

diagnosis accuracy[8]. Five features were selected 

as predictors in multi-class support vector machine 

(SVM) classification. The five selected features are 

entropy estimation error, mean, root mean squared 

(RMS) kurtosis, and histogram lower bound. A 

multi-fault diagnosis scheme for bearings was 

presented using hybrid features resulting from their 

acoustic emissions and a standard multi-class 

extension of the binary SVM [9]. Complete 

ensemble empirical mode decomposition (EEMD) 

was used with adaptive noise to detect rolling 

element bearings' faults [10]. The effect of sparse 

auto-encoder on the ordering performance of 

significantly compressed measurements of bearing 

vibration signals was displayed computationally 

[11].  

One of the most used data identification methods 

for fault diagnosis is the machine learning and 

artificial neural network (ANN) algorithms. It can 

be observed that ANNs are used as classifiers based 

on the features extracted from collected data. 

Features characteristics have a significant influence 

on the results and signal processing techniques. 

Therefore, it is necessary to select the more 

characteristic features in this scenario. A type of 

fault diagnosis algorithm was proposed based on 

manifold learning combined with a Wavelet Neural 

Network (WNN) [12]. The compressed sensing 

method was applied to get many compressed 

measurements of the primary bearing dataset. A 

Deep Neural Network (DNN) was performed for 

learning over complete sparse illustrations of these 

compressed datasets. An adaptive deep 

Conventional Neural Network (CNN) was 

proposed for roller bearing fault diagnosis[13]. 

Infrared thermography was used to monitor various 

conditions of roller bearings [14]. Two-dimensional 

Discrete Wavelet Transform (DWT) and Shannon 

entropy were implemented to decompose images 

for a certain decomposition level of approximated 

coefficients. The histograms of obtained 

coefficients were then employed as an input for the 

Genetic Algorithm (GA) and Artificial Neural 

Network (ANN) to achieve the most classification 

accuracy. Particle filtering and adaptive neuro-

fuzzy inference system (ANFIS) approaches were 

used as fault prediction techniques [15]. The 

ANFIS learned the transition function of fault 

features, and then the practical filter algorithm 

predicted the remaining useful life of the gearbox. 

In this research work, an improved monitoring 

solution based on vibration signatures is proposed 

to detect different faults in the rotating machines. 

The main objective is to extract unique features for 

each fault to avoid ambiguous diagnosis occurred 

in conventional fault diagnosis analysis. Section 2 

introduces the experimental setup for the rotary 

machine test rig and definitions for applied 

mechanical faults. Then, the instrumentation and 

software are described in Section 3. Moreover, the 

signature analysis and machine learning method are 

discussed in section 4. The experimental results and 

analysis are presented in section 5. Finally, section 

6 discusses the research conclusions. 

2.Experimental Setup 

The main objective of the test rig used 

in this research is to simulate common 

faults in rotary machines installed in 

many industries. Due to the nature of 

operating conditions and production 

requirements, the test rig operated nearly 

12 hours to measure vibration signals 

resulted from healthy and different faulty 

cases at non stationary regimes (i.e. 

variable operating speed). The test rig was 

constructed from two shafts supported on 
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four bearings of UCP206 bearing type, as 

shown in Fig 1. The power is transmitted 

to the second shaft through pulleys and 

belts; each shaft carries one disc. A three-

phase servo motor of APM-SE09MEK 

model type with a short shaft was used as 

a power source, and its speed was 

controlled by a servo drive of L7SA020A 

model type. The motor shaft was 

connected to a flexible coupling that 

assembled the motor shaft and the first 

shaft in the test rig. 

 
Fig 1: Test rig  

 

 

Datasets of 104 cases were collected for healthy 

and different fault cases. The faults applied to the 

test rig are static unbalance, dynamic unbalance, 

pulley misalignment, belt damage, and combined 

faults as arranged in Table 1. The static unbalance 

was modeled as one weighted mass installed in the 

rotors of two shafts. The dynamic unbalance was 

modeled as two weighted masses; the angle 

between was slightly loosened to simulate the belt 

damage faults. Combined faults cases were 

simulated by testing the rig with two faults 

simultaneously (unbalance with pulley 

misalignment and unbalance with belt damage). 

Each fault case was tested at 500RPM (8.34Hz), 

1000RPM (16.67Hz), 1500RPM (25Hz), and 

2000RPM (33.33Hz) to study the ability to 

distinguish different faults in variable speed 

machines. 

 

 

 

 

 

 

 

 

 

Table 1: Description for different fault cases 

 

3.Instrumentation 

A data acquisition system was used to trigger the 

data measured by sensors converted from analog to 

digital format at a specific sampling rate. B&K 

PULSE input module type 3050-A-060 was used as 

a data acquisition system in this analysis. It 

includes six high-precision input channels with an 

input range from DC to 51.2 kHz. A standard LAN 

cable was used for synchronous sampling between 

the module and system power. The module allows 

front panels to be interchanged freely, with various 

connectors for different transducers and 

applications. Electronic data sheet (TEDS) 

transducers were connected to the module, allowing 

intuitive front-end and analyzer setup based on 

TEDS information stored in the transducer such as 

family, serial number, sensitivity, and 

manufacturer. Two TEDS transducers were 

connected to the first two channels of the module, 

and each transducer was connected to the module 

by a Bayonet Neill–Concelman (BNC) cable of 

radiofrequency coaxial connector. The two 

transducers were used to measure the vibrational 

acceleration signals in the vertical and horizontal 

directions simultaneously on the same bearing.  

Pulse Labshop software was setup, and vibration 

signals were collected through a frequency range 

from 0 to 400Hz, and time waveforms were 

sampled to 4096 samples to record 4sec and to 

satisfy Nyquist–Shannon sampling theorem (Fs =

Symb
ol 

Description  No of Cases 

500

rpm 

1000

rpm 

1500

rpm 

2000

rpm 

C0 Healthy 

condition  1 1 1 1 

C1 Static 

unbalance on 
one shaft 

2 2 2 2 

C2 Static 
unbalance on 

two shafts 

9 9 9 9 

C3 Dynamic 

unbalance  
2 2 2 2 

C4 Pulley 

misalignment  
1 1 1 1 

C5 Combined 

unbalance and 
pulley 

misalignment  

5 5 5 5 

C6 Belt damage 1 1 1 1 

C7 Combined 

unbalance and 

belt damage  

5 5 5 5 
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2.56 × Fmax=1024samples/sec). FFT spectra have 

1600 lines of resolution, yielding a frequency 

resolution of 0.25Hz.On the other hand, the servo 

motor of APM-SE09MEK model type was 

connected to the APD-L7S servo drive, as shown in 

Fig 2 for complete control of the input and output 

parameters of the motor.  

 
Fig 2: Configuration of data collection system 

4.Analysis Methods 

4.1Vibration Signatures 

The vibration analysis of the rotary machine is 

based on detecting mechanical faults associated 

with the operation and mounting of the machine. 

Almost of mechanical faults are detected in the 

low-frequency range (0~5f0), where f0 is the 

machine rotating frequency. For example, rotor 

unbalance and bent shaft can increase the amplitude 

at f0, shaft misalignment increases the amplitude at 

f0, and 2f0, external and internal looseness 

increases the amplitude f0, 2f0, …, nf0, where n is 

the harmonic number. These components can be 

defined by order, X, so, f0, 2f0, , nf0 is replaced by 

1X, 2X, …, nX. Monitoring these components 

based on the signature of vibration analysis 

contributes to detecting these types of faults. In this 

research, the root means square (RMS) of time 

signal was estimated at two bearings for different 

fault cases and employed as an input vector to the 

ANN.     

4.2Machine Learning – Neural Networks 

ANNs aim to duplicate the behavior of the 

human brain, which can generate specific 

illustrations such as objects or numbers. It is 

necessary to define the central processing unit 

called a neuron. The neuron in biological 

science is responsible for processing the 

information (in a signal form) received from the 

dendrites, which are the input way of signals, 

and then pass through the axon (the output path 

of the neuron). This process can be represented 

in ANN by a function called the transfer 

function. The transfer function determines 

the output value of the neuron based on the 

overall values of its inputs. There are more 

functions employed as transfer functions, and 

the widely used is the sigmoid transfer function. 

The sigmoid output from each jth neuron o[j] is 

represented from the following relation 

o[j] =
1

{1 + exp(−i[j])}
                         (1) 

Where i[j] is the sum of inputs to neuron j. 

The architecture of ANN is composed of input, 

hidden, and output layers. The input layer is 

specified to receive the input, while the hidden 

layer is responsible for processing these data; the 

processed data are delivered by the output layer 

where the data can be viewed. The architecture of 

ANN can be represented by the scheme shown in 

Fig. 3. The network shown is composed of N input 

data inserted in the input layer, followed by the 

hidden layer with M neurons, and then L output 

data are achieved from the output layer. 

 
Fig 3: Schematic diagram of neural network 

The back propagation neural network (BPNN) is 

one of the main methods constructed from 

multilayer networks. The algorithm of this network 

is based on the propagation-adaptation cycle since 

it computes the gradient of the loss function for a 

single weight by the chain rule. The network 

consists of an input pattern propagated from the 

first layer through hidden layer (s) ended at the 

output layer. Once the output is estimated, it is 

compared to the actual output, and the deviation 

(error) between two values is obtained through the 

following relation  

𝐸𝑟𝑟𝑜𝑟 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 

The error propagates from layer to layer from the 

entrance in the direction of exit till all neurons have 

received the error signal. After that, the data travel 

back from the output layer to the hidden layer (s) 

which modify their weights to allow the network to 

classify the training dataset correctly and decrease 

the error. The process is repeated until the desired 
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output is achieved. The importance of BPNN is 

represented in recognizing the characteristics of 

input data and minimizing the output error [16]. 

5. Results 

5.1. Vibration dataset 

FFT was computed for vibration signals, and the 

RMS at two bearings (No. 1 & 2) in the horizontal 

(Ht) direction was estimated and inserted in the 

ANN as the input vector. The vibration analysis 

was performed on the time waveform as displayed 

in the example shown in Fig 4. This figure presents 

the effect of unbalance fault on the vibration pattern 

and level since the unbalance increased the 

amplitudes at 2X, which is considered the dominant 

to increase the RMS of the time signal. The effect 

of different faults on changing the values of RMS 

levels is shown in Fig 5 and Table 2. However, 

there is an observed change in the levels of the 

selected vibration parameters; the simple frequency 

spectrum is not adequate for the diagnosis of some 

simulated faults without other aided tools[17], [18]. 

 

Fig 4:  Frequency spectrum and time wave form for 

healthy and unbalance fault-1500rpm-Bearing                

No. (1)-vertical direction 

 
Fig 5: Variation of RMS for horizontal directions of 

two bearing-1500rpm 

Table 2: RMS at bearing No. 1 & 2 in the 

horizontal direction-1500rpm 

 

5.2Machine Learning - BPNN         

A simple relation based on the size of training set 

may be useful for selecting the number neurons in 

the hidden layer as follow: 

𝐽 = log2 𝑃                                       (2) 

where P is the number of training vectors used to 

train the ANN [19]. Another network learning 

improvement is based on repeated presentations for 

training samples which often produces good results 

and generalizations in some applications [19]. In 

this analysis, each sample in the training set was 

used three times in the training stage. Four-layer 

BPNN and 20 neurons in each hidden layer were 

built, as shown in Fig 6, using log-sigmoid and tan-

sigmoid transfer functions in the hidden and output 

layer, respectively. The training performance and 

accuracy are displayed in Fig 7 and Fig 8It was 

found that the training, test, and validation 

performance achieve the same pattern and the best 

validation was recorded at 0.3304 mean squared 

error (MSE). The training accuracy could be 

estimated by using the following formula 

Accuracy =  
∑ 𝑤

𝑁𝑐
𝑖=1

𝑁𝑐
× 100 (%)                 (3) 

where Nc is the number of simulated cases for 

the same type of fault, w is the recorded weight 

for each case since if the network output equals 

the simulated case, w = 1, else, w = 0. It was 

found that the network can identify combined 

pulley misalignment with unbalance, static 

unbalance on two shafts, dynamic unbalance, 

and combined belt damage with unbalance 

faults with identification accuracy of 95, 92, 88, 

and 80%, respectively. Static unbalance, pulley 

misalignment, and belt damage faults come in 

the second level of accuracy since they have the 

same accuracy of 75%. The training accuracy 

for all cases is arranged in Table 3. 

 

 

 

Case 

Type 
C0 C1 C2 C3 C4 C5 C6 C7 

RMS-

1Ht 

(mm/s) 

1.86 1.94 5.7 2.87 2.37 6.38 1.77 4.18 

RMS-

1Ht 

(mm/s) 

1.93 3.44 8.08 3.18 2.33 5.98 1.79 5.05 
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Fig 6: Feed forward BPNN architecture  

 
Fig 7: Neural network validation performance 

 
Fig 8: Neural network regression  

Table 3: Identification accuracy for healthy and 

faulty cases 

 

Case Type C0 C1 C2 C3 C4 C5 C6 C7 

No of 

Cases (N) 
12 24 108 24 12 60 12 60 

Accuracy 

% 
60 75 92 88 75 95 75 80 

 

6.Conclusions 

Fault detection of rotating machine based on 

vibration measurement and machine learning 

algorithm was presented in the research. Vibration 

time signals were analyzed and their RMS at 

different bearings were estimated for training the 

BPNN. It was found that the test and validation 

performance achieve the same pattern and the best 

validation was recorded at 0.33038 mean squared 

error (MSE). This training accuracy can identify 

combined pulley misalignment with unbalance, 

static unbalance on two shafts, dynamic unbalance, 

and combined belt damage with unbalance faults 

with identification accuracy of 95, 92, 88, and 80%, 

respectively. Static unbalance, pulley misalignment, 

and belt damage faults come in the second level of 

accuracy since they have the same accuracy of 

75%. Furthermore, this network has a superior 

improvement in detecting combined faults in 

addition to other single variable faults. More 

features, which have significant variations with 

different cases, have to be selected as input 

parameters to the ANN to improve the training and 

identification accuracy for healthy and different 

fault cases.          
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